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I discuss relativistic quantum fields whose time-space translations are realized 
in indefinite unitary groups. Such indefinite metric fields describe interactions, 
e.g., the Coulomb interaction, which cannot be parametrized completely by 
particles. They cannot be expanded with time-space translation eigenvectors; the 
representations of the translations involved are triangularizable, but not 
diagonalizable. To project on a positive-definite subspace for a probability 
interpretation, the vanishing of the nilpotent part in the time-space translations 
realization is required. A trivial Becchi-Rouet-Stora charge (gauge invariance) 
for the asymptotics in quantum gauge theories can be interpreted as one special 
case of this general principle--the asymptotic projection to the eigenvectors of 
the time-space translations. 

N O T A T I O N A L  P R E L I M I N A R I E S  

Throughout  this paper  definite units for t h e - - a p p a r e n t l y - - t h r e e f o l d  
dimensional  graduation in physics are assumed:  h (Planck 's  action unit), 
c (Einstein 's  velocity unit), and an unspecif ied mass  unit IXo. With such a 
basis all masses  and ene rgy-momenta  come as real numbers .  

Relativistic fields are symbol ized  with boldface letters, e.g., O(x) ,  Z(x),  
I(x), b(x), etc., their harmonic  components  with R o m a n  letters, e.g., e, U, a,  
b, etc. 

For Lie groups,  U(n+, n_) and SU(n+, n_) with n+ + n_ = n stand for 
the unitary and special unitary groups. O(n+, n_)  and SO(n+, n_) denote the 
real orthogonal  groups, SO§ n) the or thochronous groups.  The  notations 
GL(Cn),  SL(C  ~) and GL(R~),  S L ( R  ") are used for  the complex  and real 
general  n2-dimensional and special (n 2 - 1)-dimensional  groups. I f  G L ( C  n) 
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and SL(C") are considered as real Lie groups with dimension 2n 2 and 2(n 2 
- 1), respectively, they are denoted with a subindex R, e.g., GL(C")R and 
SL(Cn)R. 

For groups realized in endomorphisms (matrix groups) a more indi~,idual 
notation proves useful. The U(1) isomorphic phase group for a d-dimensional 
complex space is written as U(ld). If U(1) is realized in SU(2) by 

(: 
the notation U(1)3 will be used, in SU(2d) the notation U(ld)3. If U(1) comes 
in U(2) as 

it will be called U(1)+ and correspondingly U(1)_ and U(la)• Analogous 
notations will be used also for other groups, e.g., SL(C~)R for 

The groups U(n§ n_) = U(1.) o SU(n§ n_) are the product of two 
normal subgroups, the phase group and the special group. Because of the 
cyclic group I. = {z e CIz" = 1} as intersection U(1.) Cl SU(n+, n=) ~ I., 
the product is not direct for n ~ 2. The group GL(C~)R = D(1.) X UIL(C~)R 
is the direct product of the normal subgroups D(ln) (dilatations) and UL(C~)R 
= U(1.) o SL(C-)R, the latter being the product of the phase group and the 
special linear group, not direct for n -- 2. 

The Lie algebras for the groups will be denoted with corresponding 
lowercase letters, e.g., u(1) for U(1), sl(C")R for SL(C")R, etc. 

INTRODUCTION 

Wigner's (1939) particle classification relies on the harmonic analysis 
of the Poincar6 group in terms of U(1)-characters for the time-space transla- 
tions x, i.e., ~positive unitary representations e ~'q ~ U(1) with real energies 
q0 = ( m2 + q2)1/2. In the course of such an analysis the semidirect product 
Poincar6 group SO+(1, 3) • M with the orthochronous L0rentz group SO§ 
3) and the Minkowski time-space translations M ~ R 4 as action group for 
fields is reduced to an action group for particles, given by a direct product 
group SO(n) • T with a homogeneous compact group SO(n) C SO+(1, 3), 
n = 3, 2, as the stability group for a 1-dimensional time translation group 
T ~ R. The cases for massive and massless particles have to be distinguished. 
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For a particle with nontrivial mass m 2 = q2 > 0, the stability group 
SO(3) (spin) describes the rotation degrees of freedom of the rest frames 
which are characterized by the energy-momenta q(m) = (m, 0, 0, 0). An 
associated Sylvester decomposition splits the Minkowski space M ~- T �9 
$3 into time and space translations S3 ___ R 3. 

Massless particles with lightlike energy-momenta q2 = 0, q :~ 0, have 
no rest systems. In this case, the Minkowski translations have to be Witt- 
decomposed M ---- L§ �9 5 2 �9 L_ into two 1-dimensional lightlike translation 
spaces L_+ ~ R and 2-dimensional space translations S 2 ----- R z. The stability 
group of those time-space translation frames which are determined by two 
independent lightlike vectors q(Iz• = !~• 0, 0, ---1) or, equivalently, by 
one nontrivial timelike and one spacelike vector L§ �9 L_ = T ~) S l with 
q(Ix) = (~, 0, 0, 0) and q(K) = (0, 0, 0, K), is the circularity (helicity, 
polarization) group SO(2). 

Collecting both cases, there arises the following scheme of Minkowski 
space decompositions with their particle's relevant stability groups: 

D SO(3) for T ~) S 3 (m 2 ~" 0) 
SO+(1, 3) for M 

DSO(2)  f o r L + @ S  2~)L_ (m 2 = 0 )  

In the framework of quantum theory, the time-space translations and 
the Lorentz group, both real Lie groups, are realized on complex spaces, i.e., 
they come as subgroups of unitary groups, not necessarily positive unitary. 

The Lorentz group comes in the group SL(C2), considered as a real 6- 
dimensional Lie group and denoted by SL(C2)R, with the isomorphy SO+(1, 
3) -~ SL(C2)R/I2, where I2 = { • 1 } is the sign group (real phases). 

For Weyl spinor fields, the Lorentz symmetry SL(C2)R is represented 
as subgroup of the indefinite unitary group U(2, 2), where it is accompanied 
by a phase group U(1). Starting from the phase Lorentz group 

U L ( C 2 ) R  = {k E GL(C2)RIIdet hi = 1} = U(12) o SL(C2)R 

the orthochronous Lorentz group is the manifold of the phase U(l~)-orbits, 
i.e., UL(C2)RAJ(12) ~- SO§ 3). Massive Majorana and massless Weyl 
particles are characterized by the subgroups 

U(12) o SU(2) 
D Majorana particles 

(m s > 0) 
SL(C2)R C UL(C2)R U(I) x U(1) 

Weyl particles 
(m 2 = 0) 

The stability group for Weyl particles is a U(1)-circularity (polarization) with 
U(1) ~ SO(2); for Majorana particles one has spin SU(2) with SU(2)/I2 
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SO(3). The additional U(1) group realizes the time-space translations 
(Section 1). 

The stability group for Dirac particles is spin SU(2) and, in addition, 
an internal charge group U(1) which arises because of the twofold left-fight- 
handed Lorentz group representation involved, 

SL(C2)R C[ U(1) X UL(C2)R D U(1) X U(12) o SU(2) 
Dirac particles 

(m 2 > 0) 

For vector fields, the Lorentz group SO+(1, 3) is represented as subgroup 
of the indefinite unitary group U(1, 3), compatible with the Lorentz "metric" 
( -1 ,  1, 1, 1). The arising field types are given in the scheme 

u(1) o u(3) ~ u(1) x so (3 )  
D Sylvester particles 

(m 2 > 0) 
SO§ 3) C U(1, 3) 

U(1, 1) o U(2) D U(I) • SO(2) 
D Maxwell-Witt fields 

(m 2 = 0) 

In the case of a Witt decomposition the indefinite Lorentz "metric" gives 
rise to the indefinite unitary subgroup U(1, 1) containing the time translation 
representations for the nonparticle contributions of the Maxwell-Witt fields 
(Sailer et  al., 1995) (Section 2). 

In general, positive and indefinite unitary groups realizing time-space 
translations will be called modality groups. They characterize the conjugations 
and inner products involved and, therewith, the probability interpretation of 
the theory. The symmetry group of a relativistic field dynamics, e.g., SO+(1, 
3) or SL(C2)R, should be distinguished 2 from the unitary modality group, 
e.g., U(1, 3) or U(2, 2). 

Representations of the time-space translations in the positive-definite 
modality group U(1) are used for Wigner-classified particles. The correspond- 
ing fields have an analysis in terms of translation eigenvectors. Fields with 
translation representations in indefinite modality groups, e.g., the nonparticle 
Coulomb degree of freedom in massless gauge fields, Fadeev-Popov fields, 
etc. (Section 2), have no full particle analysis. The harmonic analysis cannot 
be performed with translation eigenvectors only. The mathematical structures 
involved, especially the connection between translations representation and 
metrical structure, are sketched in Section 3. 

2An analogous situation is familiar from "dynamical symmetries," e.g. U(2, 2) for the nonrela- 
tivistic hydrogen atom containing the symmetries SU(2) • SU(2) for the bound states and 
SL(C2)R for the scattering states. 
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The main problem using fields which describe interactions without 
asymptotic particles is the unitarization, i.e., the establishment of a projection 
condition, compatible with the dynamics, to a state space with a positive 
inner product. It is shown in Section 4, how the projection to translation 
eigenstates coincides with the projection of the full algebra of fields to a 
subalgebra with positive inner product. In the case of Maxwell-Witt fields, 
the projection to time-space translation eigenstates coincides with the familiar 
gauge invariance condition (Becchi-Rouet-Stora invariance [Becchi et al., 
1976]) for quantum gauge fields. 

1. PARTICLE FIELDS AND POSITIVE METRIC 

In this section, positive metric quantum fields are considered which can 
be expanded with particles only, i.e., with translation eigenstates. To prepare 
the discussion of the less familiar fields with indefinite metric in Section 2, 
the representation properties of Dirac, Weyl, Majorana, and Sylvester particles 
are considered in some detail with respect to the represented action groups. 

For a relativistic particle field O(xl m) which is symmetric with respect 
to a conjugation * and which allows an analysis of the time-space translation 
properties with a Dirac measure for mass m --> 0 

f d4q eixq ( l( )~(m2 
�9 • = ~ - i  qo) - q2)e(q) -- tP• (1.1) 

the energy-momentum reflected harmonic components e ( -q )  are related to 
each other by the conjugation *, 

�9 • = f d3q (1.2) ~ ( l i )  eixqe(q) +--e-iXqe(q)* 
"2 " q0 = (m 2 +~'2)I/2 

e(q) = e( -q)*  

The real 4-dimensional additive group of the time-space translations M 
=- R 4 is realized for particle fields in the real 1-dimensional compact unitary 
group U(1) with the energy-momenta q, q2 = m 2, as eigenvalues 

f D.l(xl q) = e ixq = D,(-xl q)* 
Dl('lq): M-->U(1),  [Ojlx=oDl(xlq)=iqJ (1.3) 

Because of the positive-definite modality group U(I) with conjugation *, 
particle fields have a probability interpretation. The representation D~(xl q) 
of the time-space translations in U(1) is irreducible and not faithful. 
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The relation between the U(l)-conjugation * for the represented transla- 
tions and the field conjugation * above has to take care of the spin proper- 
ties involved. 

1.1. Sylvester Particles 

Sylvester particles will be defined as Bose particles with nontrivial 
mass M > 0 and stability group SO(3); they carry integer spin s = 0, 1, 
. . .  representations. 

For faithful representations of the Lorentz group SO+(1, 3) with stability 
group SO(3), the defining representation can be exemplified by a massive 
vector field without internal charge degrees of freedom, e.g., the free neutral 
weak boson field Z k of the standard model with mass M > 0. With a rest 
system determined up to space rotations, the time-space translation analysis 
for Z k and its canonical partner G k~ read 

=f (q)i eixqU(~)a+e-ixq~abU(~)~ Z(X)/~ d3q ~ A 
(2'rr)3qo M ~/2 

iG(x) kj= f (2,rr)3q 0d3q ~ A(M]0q/~kt]A(\M]aq~ etxqU(q)a--~e-'~q~ abU(q)~ (1.4) 

The boosts A(qlM) with q2 = M 2 transmutate from Lorentz vector fields 
to spinning particles, i.e., from SO§ 3) to SO(3) representations with three 
spin directions a = 1, 2, 3, 

( q ) i  1 (q0 q ~@~/~/) A(1, 0, 0, 0) =14  (1.5) 
A ~ ----" M q 13M + 

,a q0 + 

Those transmutators are representatives for the classes of the real 3- 
dimensional Sylvester manifold SO+(1, 3)/SO(3). 

The free field dynamics is illustrated by the classical SO+(1, 3)- 
invariant Lagrangian 

.~(Z, G) = G jk Ojzk -- OkZj .~(Z, G) (1.6) 
2 

( G )  = + 

With the representation of the Lorentz group in a unitary group SO+(1, 
3) C U(1, 3), the stability spin group comes with a U(13)-conjugation, U(13) 
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• SO(3) C U(1, 3). The positive-definite modality group U(13) ~ U(1) 
represents the time-space translations. Its conjugation exchanges Z-creation 

. -'~ 

operators U(q) a with Z-annihilation operators U(q) g, 

conjugation * ~ -~ 
for modality group U(13)J U(~)a ~ ~abU(q)~' (1.7) 

Lorentz vector fields are symmetric with respect to the conjugation *, i.e., 
Z = Z * , G =  G*. 

The quantization and Fock-space positive inner product 

[U(p)a*, U(q) b] = ~ba(2"tr)3qo~(q - p) (1.8) 

({U(p)~*, U(q)b}) ~b(2"rr)3q0~( q p) " -* = -- = (U(p)*aU(q) b) 
lead to the field commutators and Fock values of the anticommutators, e.g., 

( [Z(y )  k, Z(x) j] ~ =  __(,l~k j ..1_ okoJ~(is(x- ylM)~ 
({Z(y) k, Z(x)J})} \ M2 ]kC(x ylM)} 

= I.d3q e-iff-~ff MA(q'~kgab( i sions(X ~ -- Yo)qo '~A(q ~.~ 
(2ax)3qo \M]a \ (o Yo)qo ]--\~.]o 

(1.9) 

with the quantization distribution s and the expectation function C 

(C(xlm)~ =fd4qeiXq ( )~(m 2 Id3qe-i~q(cOsx~176 2, q2) 
s(xl m) ] (2703 --i-,qo) (2,rr)3q0 \ sin xoqo 

(1.10) 

The modality group U(1), gene~ted by if(U), is compatible with the 
stability group SO(3), generated by iS(U), 

f d3 q {U(q) a, U(q)a ~} 
I(U) = (2.rr)3q ~ 2 I(U)* 

{U(q) b, U(~)~*} 
J = S(U) a* (l.ll) 

d3q 
S ( U ) a  = ~ ie~t'c 2 

[I(U), S(U)] = 0 

1.2. Dirac Particles 

Dirac particles will be defined as Fermi particles with nontrivial mass 
m > 0 and stability group U(2); they feel half-integer spin SU(2) representa- 
tions s = 1/2 and a nontrivial internal charge group U(1). 
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Faithful representations of the phase Lorentz group UL(C2)R = U(12) 
o SL(C2)R with stability group U(2) are exemplified by massive Dirac fields 
qr _- (1, r). They carry a decomposable phase Lorentz group representation 
with irreducible left- and right-handed Weyl contributions, illustrated by the 
free electron field of the standard model with mass m > 0. The time-space 
translations analysis for left- and right-handed contributions 

,<x:=f "" :~(q-I ~e~qu<~>~176 
(2"rr)3qo \m]. v/2 

ir(x) A = i I d3q ~ ~(qla e/Xqu(q)'~- e-/~qa(q)*'~ 
(2'n')3qo \m/a x/~ 

l(x)~= I d3q x/r~ k(ql*~eixqa(-q)~ + e-ixqu(-q)*~ 
(2'rr)3qo \m]A x/~ 

/ _ l a  �9 -+ . -+ f d3 q q e~qa(q)~ - e-~qu(q)* 
ir(x)~=-i (2-~q0 q/m h - \m/a ~/~ 

(1.12) 

involve electron and positron operators for creation u(q), a(q) and 
annihilation u(q)*, a(q)*. 

The Weyl-represented boosts h(q/m) with q2 = m 2 transmutate from 
spinor fields to particles, i.e., from SL(CE)R to SU(2)  representations with 
two spin directions ct -- 1, 2, 

h ( q )  = ~/-~---m~ (12 + qo~--q+m), 

h(1, 0, 0, 0) --12 = h(1, 0, 0, 0) 

~(q I:~(q I'~ ~(q I ~(q i "~ _ ~,~,~: ,m, ,m,O' ,m,a m 

Weyl matrices: bk = (12, ~), Pk = (12, - ~ )  

(1.13) 

A classical UL(C2)R-invariant Lagrangian reads 

:~(1, r) = ii~kOkl * + irpk0kr * -- ~(1, r) (1.14) 

if(l,  r) = m(Iar~ + rAl~) 
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The quantization connects dual pairs 

{u(p)~*, u( )~} = {a(p)~, a(q) "~} = ~](2~r)3qo~(~ - p )  (1.15) 

The stability group conjugation 

conjugation * ) f u ( q ) "  ~' 5'~au(q)l~ 
for stability group U(14) o SU(22)~a(q )  " ~ ,  5'~aa(q) a (1.16) 

exchanges creation and annihilation operators. 
The phase group U(14) -= U(I), e.g., the electromagnetic charge group 

for electrons and positrons, is generated by il(u, a*) 

l(u, a*) = l(u) + l(a*) 
r d3q [u(q)a' u(q):] + [a(q) *~, a(q)~] (1.17) 
~ (2~')3qo 2 

= I(u, a*)* 

and the spin group SU(22) ~ SU(2) by i~(u, a*) 
~(u, a*) = ~(u) + ~(a*) 

= f ~ ~.~ [u(q)", u(q)~] + [a(q)*", a(q)p] (1.18) 
L (2"tr) q0 2 

= S(u, a*)* 

The group U(12)3 ~ U(1), which represents the translations, has the 
generator il(u, a) 

a(q)u] f d3q [u(q) '~, u(q)*] [a(q) Ot 
l(u, a) = l(u) - l(a*) = I = l(u, a)* (21r)3q0 2 

[l(u, a*) + S(u, a*), l(u, a)] = 0 (1.19) 

The Fock inner product is positive with the stability group conjugation *, 

= (u(p)~*u(q) ~) = ~(2xr)3q0~(q - (1.20) ([u(p)~*, u(q)P]) p )  

([a(p) *~, a ( q ) j )  = (a(p)*Pa(q)~) = ~(2"tr)3qo~(q - p )  

Quantization and Fock state lead to the familiar field anticommutators 
and Fock values of the commutators, 

{[1(0), l(x)l)] = pko ~-iC(xlm) " {1(0)', i(~)l = pog(X), etc. (1.21) 

Spinor fields are symmetric 1' = !, (ir)* = Jr, etc., with respect to the 
indefinite conjugation exchanging particle creation with antiparticle 
annihilation 

conjugation t :  u(q) '~ ~, a(q) '~, a(q)~ ~ u(q)~* (1.22) 
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1.3. Weyl Particles 

Weyl particles will be defined as massless Fermi particles m = 0 with 
stability group U(1) which may be called an internal (hyper)charge or 
circularity. 

The massless limit of the SL(C2)R/SU(2)-transmutator, used for a Dirac 
field, leads to the two projectors for lightlike energy-momenta q2 = 0, q0 :/: 0: 

p+(q) = lim m h - 12 + ~rq/Iql 
m~O 2 

P'(q)=lim~qoh(q)-12--~-qll-qlm-*O 2 (1.23) 

12 --- r 
P+(qo, O, O, +-qo) - 2 - P-(qo, O, O, -T-qo) 

Any spacelike direction ~ q / I q l  can be transformed into a fixed third axis 
~r3 of a rest frame, determined up to SO(2) rotations of the (1, 2)-plane, 

o {r3o = , q~ = 2 > 0 (1.24) 

with a 'rotation' o(q/qo) ~ SU(2) as a representative of a class in SO(3)/ 
SO(2) ----- SU(2)/U(1)3, 

(~o) 1 ( q o + q 3  q,-iq21, o ( 0 , 0 , 1 ) = 1 2  
o = x/2q0(qo + q3) k-q1 - iq2 qo + q3 ] 

p+_fq) = o o\-~o ] o+_. o+_ 

with o _ + ~ ; ) =  \q~ 

Therewith the time-space translation analysis of a free massless Weyl 
field with a left-handed Lorentz group representation and classical Lagrangian 
~(1+) = ii+Ok0q~, e.g., of the electron neutrino field in the standard mode l - - i f  
massless--looks as follows: 

~ ~d3q x/~o [-~a . l+(x) A = o + [ ~ )  (e/Xqu(q) + e-'Xqa(q) *) (1.26) 

l+(x)1 = I (2~)3qo daq ~ o+ .(eaqa(~) + e-~qu(~) *) 
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With the massless field stability group U(12) x U(1)3 C U(2) there is 
no SU(2)-spin degree of freedom left for the particles. 

The conjugation * exchanges creation with annihilation 

conjugation * ~ -, 
for stability group U(12)J u(q) ~ u(q)*, a(q) ',-' a(q)* (1.27) 

The stability group U(12) ~ U(1) is generated by il+(u, a*) 

l+(u, a*) =/+(u) + l+(a*)_, 
I d3q [u(q), u(q)*] + [a(q)*, a(q)] (1.28) 

2 
= l+(u, a*)* 

l+(u, a*) is an internal (hypeOcharge or the polarization. 
The translation representing group U(I)3 - U(I)  is generated by il+(u, a), 

l+(u, a) = l§ - l+(a*) 

_ f (2"rO3qod3q [u(q), u(q)*] -2 [a(q)", a(q)] = /+(u, a)* (1.29) 

[/+(u, a*), l+(u, a)] = 0 

The Fock product is positive with the conjugation *, in analogy to the 
massive case. 

1.4. M a j o r a n a  Part ic les  

Majorana particles, if they exist, will be defined as Fermi particles with 
nontrivial mass m > 0 and stability group SU(2) for spin s = 1/2 without 
an internal charge. 

Since the SL(C2)R Lorentz properties of the irreducible Weyl contribu- 
tions l(x) a and r(x),~ in a Dirac field are isomorphic with the invariant bilinear 
spinor 'metric' 

k E SL(C2)R: r CD = (k- l )  D, GAS = --r (1.30) 

one can consider the case where the four Dirac fields (i, r*; r, 1") are built 
with only two irreducible left- and right-handed Weyl representations (L, R) 
by 'crossover' identifying particles and antiparticles 

a(q) *~ = ie'~au(q)~, a(q),~ = - i u ( q ) ~ a  (1.31) 
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Therewith one describes Majorana fields with the time-space transla- 
tion analysis 

L(x)a = I d3q ~ h q e~qu(q)'~ + e-~qi~u(q); 
(27r)3q0 m,,~ ~ = i~ABR(x)*B 

L(x).~= I d3q , ~  h(ql*~ -e~ + e-~qu(-d)~ = _iR(x)Be~A 
(2"rr)3qo \m] A x/~ 

(1.32) 

The classical Lagrangian is only SL(C2)R-invariant, 

~(L) = iL~k0kL * -- ~(L) (1.33) 

~(L) = im(eBALAL B -- L~L~e ca) 

The two conjugations use the two components a = 1, 2, 

conjugation * 1 --' -* 
for stability group SU(2)~ u(q)" ~ ~au(q)~ (1.34) 

conjugation t u(q) ~ "~ ie~au(q)~ 

One can write for the combinations in the time-space translation analysis 

I (:+a'/ u ~ + t e ~ u ; - -  i - *) 

u I = u ,  u 2 = i a ~  (1.35)  

[ ( / ( (  a au) ) tCu ~ - ~ u ~ )  = + ) 

The dual pair quantization and Fock values are analogous to the 
Dirac case 

{u(p)~,, u(q) a } '  = 8~(2"tr)aq0~(q~ - ) = ([u(p)*~,--' u(q)~])" = (u(p)*u(q) a ) - "  -' 
(1.36) 

The generators iS(u) for the spin group SU(2) and il(u) for the transla- 
tions realizing group U(I) are 

d3q ~ [u(q) a,u(q)~] _ 
S(u)  = ~ (r~ 2 

l(u) = I d3q [u(q)a' u(q)*] _ l(u)* (1.37) 
(2"rr)3q0 2 

[S(u), I(u)] = 0 
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2. FIELDS W I T H  I N D E F I N I T E  M E T R I C  

In this section the less familiar indefinite metric quantum fields are 
discussed. Such fields cannot be expanded with particles only, i.e., with 
translation eigenvectors. They are used for locally formulated relativistic 
invariant interactions. 

Prominent examples for indefinite metric quantum fields are gauge 
fields: The electromagnetic vector field with its four Lorentz components 
has two particle degrees of freedom with positive-definite modality group 
U(2), the two massless photons as left- and right-polarized representations 
of the stability group SO(2) for the Witt decomposition M ------- T if) S 2 ~ S ~ 
of the time-space translations. The two additional SO(2)-trivial lightlike 
degrees of freedom T �9 S ~ ~ L+ ~ L_ ~ R 2 have no particle interpretation. 
They describe the gauge degree of freedom and the Coulomb interaction and 
have an indefinite U(1, 1)-modality group wherein the translations are 
represented. 

Also, Fadeev-Popov fields have an indefinite U(1, 1)-conjugation • 
without particle interpretation. 

Characteristic structures of indefinite metric quantum fields are derived 
Dirac measures. A relativistic field ~'(xlm) = (dldm2)~(xlm) which is 
conjugation * symmetric and allows an analysis of the time-space translations 
with a derived Dirac measure for mass m >- 0 

qo, �9 "(xlm) = ~ - q2)e(q) = ~ ' ( x l m ) *  (2.1) 

contains harmonic components e(q, x) with a first-order polynomial depen- 
dence in the time-space translations 

I ('-I @~(xlm) = ~ i 2 [qo=(m2+~2)l/2 

with e(q, x) = eo(q) + ixel(q) = e(--x, --q)* 
In this case, the real 4-dimensional additive group of the time-space 

translations M ---- R 4 is represented as a subgroup of the indefinite unitary 
group U(2, 2) with the energy-momenta q, q2 = m 2, as eigenvalues 

D2(xlq) = dxq(~ iplxJ) = ei~~J = D2(-xlq)X 

D2('lq): M --~ U(2, 2), dJlx=~ = iQ2 = i( q~2 qq2PJ) 

pj --' 
= (12, er) 

(2.3) 
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The image of the time-space translations is an R4-isomorphic unitary subgroup 
of U(2, 2) as illustrated by the triangular Jordan matrix with the characteristic 
nilpotent contributions. The time-space representations D2(x I q) are faithful and 
reducible, but nondecomposable. Because of the indefinite unitary modality 
group U(2, 2) such fields have no probability interpretation in terms of particles. 

2.1. M a x w e l l - W i t t  Fields 

Maxwell-Witt fields (Sailer et al., 1995) will be defined as massless 
Lorentz vector Bose fields with stability group SO(2) for circularity (polariza- 
tion). In addition to massless particles they contain also nonparticle con- 
tributions. 

The SO+0, 3)-invariant Lagrangian for a free massless vector field, e.g., 
the electromagnetic field 

~(A, F, G) = GOkA k + F jk 0)A~ - 0kAj ~(A, F, G) (2.4) 
2 

FJkFik G 2 
~ ( A , F , G ) = - I ~  4 ~r 2 

has to include, with respect to a quantum framework, a canonical partner G, 
called a gauge-fixing field, for the scalar part of the vector field A k. Here p~ 
> 0 is a mass (no particle mass) which, in an interacting theory, can be related 
to the gauge coupling constant; o- =/= 0 is called the gauge-fixing constant. 

In the quantization distributions (Nakanishi and Ojima, 1990) 

f d4q e~q = ~ ~(q0)i 

[iFkJ(0), Ar(x)]~ 
[Ak(0), G(x)] | 
[Ak(0), AJ(x)] / 

E~q/~(q2) ) 

qkS(q2) 
--wqkJS(q 2) -- (!~ + (r)qkqjS'(q 2) 

(2.5) 

there arises the derived Dirac measure 8'(q 2) as a characteristic feature of 
the nonparticle structure. Its time translation analysis looks as follows: 

s'(xlm)= ~m2 S(xlm)= - i  f d4q eixq (27r)_____. T r 2 _ q2) (2.6) 

_ f d3q e - ~  Xoqo cos x0qo - sin xoqo 

J (27r)3qo 2q 2 

The translation analysis of the massless vector field has to include a 
transmutation O(q/qo) with q2 _- 0, q :/: 0, from the rest frame stability group 
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SO(3) to SO(2) for rest frames with fixed third axis 

/1 

0 1 

o 

0 

0 0 

(ql) z qtq2 

qo(qo + q3) qo(qo + q3) 
qlqz (q2) z 

1 
qo(qo + q3) qo(qo + q3) 

ql q2 

qo qo 

q 

ql 

qo 

q2 (2.7) 
qo 

q3 

qo 

basis with 'skew-diagonal' metrical tensor t 

(o' o), witt: _,_- ,2 Sylvester: - ' q  = 13 0 

(,,o o 
t = w ' q w  r with w = \ _ l / . , / ~  12 

o 1 /~ /  

(2.8) 

For vector fields, the Lorentz group with its signature (1, 3) indefinite 
'metric' is represented in the indefinite unitary group SO+(1, 3) C U(1, 3) 
which determines the conjugations and modality groups U(1, 1) o U(2) C 
U(1, 3) for the gauge field. A massless vector field has the time-space 
translation analysis (Sailer et al., 1995) 

�9 "- '> - - "  ~ X le~qB(q, Xo) + e '~qNoG(q) 1 

e~xqU(q) 1 + e zxqU(q)l 
k V~ 

. -~,  (2.9) A(x) k =  d3q S o(qlw~i,  e/xqu(~)2 + e-,xqU(q)2 
(2a'r)3qo \qo]j 

V~ 
eiXqNoG(-~) + e-/XqB(q, Xo) x 

G(x) = i f - -  
d3q ~ e~XqG(q) - e-~XqG(q) 

(2'rr)3qo 

o(~ , (~-I (~-; o(o,o,1, 1, wo/j = 2 tro r Oj, kqo/ \qo/ 

According to the isomorphy of a time-space and light-light decomposi- 
tion T �9 S ~ ~ L+ (~ L_, it is convenient to transform from a time-space 
Sylvester basis with diagonal metrical tensor -q to a light-space-light Witt 
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The (1, 2)-components U(q) t'2 have time translation representations in the 
positive-definite group U(2); they describe particle degrees of freedom (pho- 
tons). The (0, 3)-components (B(q), G(q)) have a linear translation 
dependence 

- +  

B(q, Xo) = B(q) + ix~176 
Mo 

1 I x + ( r  

with Mo = - - ~ - -  (2.10) 
3Ix + (r 

No F 

The characteristic terms (ixoqo[Mo)e ix~176 are associated with nondecomposa- 
ble, but reducible representations (Boerner, 1955; Sailer, 1989) of the time 
translations 

1 
Dz(xolqo) = [exp(ixoqo)] 0 ixoq~lMO)= exp[ixoqo( 0 l/Mo)] 

(2.11) 

as an R-isomorphic subgroup of the indefinite unitary group U(1, 1) 

1 . 0  o , q , , .  (0 0>oqo,(, x0qo, (2.12) 

The quantization connects dual pairs 

for (1, 2): [U(p)*~, U(q)a] = ~(27r)3q0~(q - p) (2.13) 

f[G(p_,) x, B(~)] = [B(p) • G(q)] ~ (2"tr)3qo~(q - p) 
for (0, 3): [[G(p)• G(q)] 0 = [B(p) x, B(q)] 

The (1, 2)-particle degrees of freedom have the positive U(1)-conjugation 
*, whereas the indefinite U(1, 1)-conjugation x applies for the (0, 3)-nonparti- 
cle degrees of freedom 

conjugation * } 
for (1, 2)-modality group U(12) U(q)l, 2 4+ U(~)~, 2 

conjugation X ]~G(~) ~ G(~) x 
for (0, 3)-modality group U(1, 1)JIB(q) ,-+ B(q) 

(2.14) 
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The time translations group, as R-isomorphic noncompact subgroup of 
U(12) ~ U(1, 1) C U(1, 3), is generated with 

H(U, B, G) 

f d3q {U(q)% U(q)~} + {B(q), G(q) • + {G(q), B(q) • 
= 2 

G(q)G(q) ~ (2.15) 

= / (U )  + H(B, G) = I(U)* + H(B, G) • 

The stability group SO(2) ~ U(1) C SU(2) (polarization) is generated 
by iS(U) with the particle degrees of freedom only 

( d3q {U(q) ~, U(q)~} - {U(q) 2, U(q)~} 
s(u) S(U)* 

J (21T)3q0 2 

[H(U, B, G), S(U)] = 0 (2.16) 

With the U(1)-conjugation *, the Fock product for the particle degrees 
of freedom is positive definite 

for (1, 2): ({U(p)*~, ~ U(q)[~})~ = ~(21"r)3q0~(q - P) = (U(p)~,U(q)~)'-' -~ 
(2.17) 

The U(1, 1)-conjugation X -~ (0 ~) for the nonparticle degrees of freedom 
leads to an indefinite inner Fock product 

({G(p) • B(q)}) = ({B(p) , G(q)}) = (2"rr)3q0~(q - p)  f 
for (0, 3): ~ /G(p )  • +__ B(p) • G(q)-* + B(q)\-* +-~ -3 o.-* -*- 

l =  \" -~ --~ / = _[z'rr) qootq - P l 

(2.18) 

For a probability interpretation, the indefinite metric has to be avoided for 
the asymptotic state space: Fadeev-Popov fields counterbalance the 'negative 
probabilities.' The requirement of gauge invariance like Becchi-Rouet-Stora 
invariance in a quantum theory projects to a positive-definite asymptotic 
particle subspace (Section 4). 

2.2. F a d e e v - P o p o v  Fields 

Fadeev-Popov fields will be defined as massless Lorentz scalar Fermi 
fields. They have no particle contributions. 
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Their classical Lagrangian uses two scalar fields A+, U_ in a second- 
order derivative formalism ~g(A., U_) = i(OkA+)(OkU-) or, in addition, two 
vector fields U~+, A k_ for a first-order formulation, 

~s177 U~-) = iA+cqkUk+ q- tq[J_OkA k - -- ~(A+_, U• 

~(A•  U+) = iI.LUkA_k 

(2.19) 

with a mass unit ~ > 0 (no particle mass). 
The quantization for the Fadeev-Popov fields with the translation 

analysis 

A+(x) = [ d3q ~ e/Xqa(q) + e-/Xqa(q)X 
(2"rr)3qo x/~ 

i . -4 )< U_(x) = i d3q ~ e~qu(q) - e ~qu(q) (2.20) 
(2"rr) aqo ~/~ 

r d 3 ~  q ~ A(q/k  e/~qu(q) + e-iXqu(q)X U+(x) k =  J (2"rr)3q~ \~]o  x/~ 

d3q A[q_ - e~qa(q) - e ~a (q )  A_(x) k i (2 )3q~ 

connects as dual pairs 
--) ~ .-~ ---) 

{u(p) x, a(q)} = (2ar)3q0~(q - p )  = {a(p) • u(q)} (2.21) 

A positive U(1)-conjugation * is impossible, i.e., u x and a x cannot be 
identified with a* and u*, resp. With {U_, U_ } = 0 also an identification u 
= a and u • = u* cannot be used. 

Therewith Faddeev-Popov fields have an indefinite conjugation 

conjugation • } --, 
for modality group U(1, 1) u(q) ~ u(q) • a(q) '~, a(q) x (2.22) 

The fields are symmetric with the conjugation •  i.e., U_ --- UX-, etc. (Rudolph 
and Dtirr, 1972; Kugo and Ojima, 1978). 

The time translations are generated by il(a, u) with 

l(a, u) = f (2,tr)3q 0 -  d3q [a(q), u(q) x] +2 [u(q), a(q) • = l(a, u) x (2.23) 
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The Fock inner product is indefinite with the U(I, 1)-conjugation x 
(o oh, 

([u(p) x, a(q)]} = ([a(p) x, u(q)]} = (2"rr)3qoS(q - p) 

/u(~)  x +- a(p) x u(q)-- -a(q) \  -. 
\ x~- x~ / * = --+(27r)aq~ -- ~) (2.24) 

2.3. Heisenberg-Majorana Fields 

It is possible, in analogy to the Majorana, Dirac, and Weyl particle fields 
of Section 1 with U(1) translation representation, to construct Heisenberg- 
Majorana, Heisenberg-Dirac, and Heisenberg-Weyl fields, all with the trans- 
lations realized in the indefinite unitary modality group U(2, 2). Those fields 
have no particle interpretation, but may be used for the implementation 
of interactions. 

Left-handed Heisenberg-Majorana fields b a, ga are analyzable with the 
time-space translations represented in U(2, 2), 

(2"rr)3qo ,~ v/~ 

b(x)~ = f (2~)3qod3q h(q)i -eimb(q' x)~i%'~ + x)~ (2.25) 

I d3q (qlleiXqg(q)a+e-ixqi~'~f~g(q)~ 
g(x) A= ~ x  m 

f d'q k(q/*'~ -eUqg(q)ai%,~+ e-Uqg(q) x 
g(x),~ = (2~)3q 0 \m]A q#~ 

The harmonic components have a linear time-space dependence with the 
translation components x(qlm)k, k = 0, 1, 2, 3, written in a rest system 

(q/i b , x)" = b(q)" + /x g(q)~ 

x = A _  _ x , ,  = 
m \m A 

(2.26) 
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The quantization of the harmonic components connects dual pairs 

[b(p)X, g(q)a} = [g(p)X, b(q)~} = ~(2xr)3qoS(~ _ p)  
- - r  ~ )<  

{g(p)X, g(~)~} = 0 = {b(p). ,  b(q) ~} 

and leads to the field quantization 

{b(O)~, b(x) A} = --(pk)~xks(xlm), {g(O)~, g(x) A} = 0 

{ g(O)~, b(x) a } = { b(O)~, g(x) a } = (pk)~O k s(x[ m) 

with the characteristic derived measure 

(2.27) 

(2.28) 

Xk d 
-~ S(x[m) = O~'(xlm) = ~m 2 0~(xlm) 

f d4q e ~ = ~ e(qo)qkg,(m 2 _ q2) (2.29) 

A classical SL(C2)R-invariant Lagrangian reads 

~(b,  g) = ib~k0kg x + igiSk0kb x -- ~(b ,  g) (2.30) 

~(b ,  g) = i ( e B A g A g  B - -  g~g~e ~A) + i m ( e B A b A g  B - -  g~b~e ~A) 

The conjugation • for the time-space translations is characterized by 
the indefinite unitary group U(2, 2) 

conjugat ion•  ] fb(~) . ,a ,  5. .b(~) ~ 
for modality group]. (2.31) 

U(2, 2) J [g(q)~ "~" 8~g(q)~ 

The R4-isomorphic time-space translation group is generated by iQ(b, g)J, 

f d3q [b(~)% g(q)X] + [g(q)% b(q)~] Q(b, g)J = ~ q2 2 -' ' -" 

= l(b, g)J + N(g) i = Q(b, g)jX (2.32) 

A compatible stability group U(1) is generated by il(b, g) 
. . . )  - . )  . . . )  . . . )  

f d3q [b(q)% g(q)X] + [g(q)% b(q)X] = 
I(b, g) = (2,r03q0 2 l(b, g)• (2.33) 

[Q(b, g)J, l(b, g)] = 0 

The fields are symmetric under the conjugation t ,  i.e., b* = b, etc., 
. . r  

fb(q)  ~ "~ ir (2.34) conjugation t ~g(~)~ ,~ ir 
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3. MODALITY G R O U P S - - T H E  MATHEMATICS 

In this section the positive and indefinite unitary representations of the 
time-space translations are discussed together with their implementation in 
quantum algebras. The mathematical structures of this section have been used 
implicitly in the former two sections. They are exhibited rather sketchily in 
the following--more as a glossary--and can be found in more detail in the 
literature (Bourbaki, 1959, Boerner, 1955; Saller, 1989, 1993a, c). 

3.1. Conjugations and Unitary Groups 

A conjugation * is an antilinear isomorphism between a complex vector 
space V ~ C d and the vector space V r ~- C d of its linear forms. It defines 
a nondegenerate sesquilinear form which, for a conjugation, is required to 
be symmetric 

conjugation: *: V,~ V r, v, to* '~ v*, to 

dual product: V r • V - ~  C, (to, u) ~ to(u) = (to, u) (3.1) 

inner product: *('1-): V •  V - o C ,  *(vlu) = (v*, u) = (u*, v) 

In the opposite direction, each symmetric nondegenerate sesquilinear form 
of a complex vector space V ~ C a determines a conjugation. 

With the conjugation defined between the vector space and its dual, a 
conjugation is defined on all multilinear structures, e.g., on the V-endomor- 
phisms V ~) V r by (vto)* = to*v*, etc. 

Since any conjugation * on V ~ C a determines its unitary invariance 
group 

�9 (g(v) I g (u) )  = *(vl u) r g E U(d+, d_) C GL(Cd), d = d+ + d_ 
(3.2) 

the d different classes of conjugations are characterized by the signatures 
(d+, d_). 

With a fixed conjugation of V ~ C d, e.g., a Euclidean U(d) conjugation 
�9 , given with a dual (V, Vr)-basis by *: e A "~, ~AB:, B, any conjugation * is 
characterizable by a linear V-automorphism * o, ~ GL(Cd). 

3.2. The Indefinite Unitary Poincar6 Group 

The unitary conformal group U(n, n) and its Lie algebra u(n, n) for n 
>- I can be illustrated in a complex (n + n) • (n + n) matrix block 
representation. A positive U(n) conjugation * defines an indefinite U(n, n) 
conjugation • via the automorphism 

(0,0 �9 oX----- in 
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We have 

d~]~ln l~)=(ca~* a*) 

U(n,n) = {G e GL(C 2~)lGx = G-l} 

u(n, n) = {LIL • = -L} 
(3.3) 

U(n, n) contains a GL(Cn)R-isomorphic subgroup with its • 
ric Lie algebra gl(Cn)a as a real 2n2-dimensional Lie symmetry, 

GL(C~)R = UL(C~)R • D(1,), UL(Cn)R = U(ln) o SL(Cn)R (3.4) 

( / o )t 
gl(Cn)R = u(ln) @ sI(Cn)R ~) d(ln) ~ R 2n2 

The real Abelian Lie algebras involved are u(ln) ~ R for the phases 
and don) -~ R for the dilatations. The remaining simple Lie algebra of rank 
2(n - 1) is the generalized Lorentz Lie algebra sI(C~)R ~ R 2(n2-1) containing 
the compact SU(n)-Lie algebra 

u (1 )~  U(12n) = R(/0 n 

sI(C2)R~SI(C~)R= {(  / 

su(n)~-su(n2)= {(~ 

0 , d(l) ~ d(ln) 3 -- R - In  il~ 

0 ) l t r / = 0 , 1  = I * } ~ R  ~2-1 

A possible basis for the Lie algebra sl(C~ uses the (n 2 - 1) generalized 
traceless Pauh, Gell-Mann, etc., matrices trn - orn, nontnvlal for n -- 2, 

(ion iOn), (On _On) (3.6' 

The real Lie algebra su(n, n) contains in addition a translation Lie 
algebra t(n 2) as a maximal Abelian ideal 

((0 O) } (0 ilnbi'~n) t(n 2) = Ix = -x* ~ R "2, basis: (3.7) 
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The translations as a semidirect factor together with the phase, dilata- 
tions, and Lorentz transformations constitute the generalized indefinite unitary 
Poincar~ Lie algebra 

u(n, n) D poinc(n) ------- u(1) ~ sI(Cn)R ~ d(1) ~ t(n 2) ~ R 3n2 

[u(1), u(1) ~ sl(C n) ~ d(1) ~ t(n2)] = {0} 
[d(1), SI(Cn)R ~ d(1)] - {0}, [d(1), t(n2)] = t(n 2) 

with [sl(Cn)R, sl(C~)Id = sl(Cn)R (3.8) 
[sl(Cn)R, t(n2)] = t(n 2) 
[t(n2), t(n2)] = {0} 

3.3. Unitary Poincar~ Groups for Time and Time-Space 

For the generalized unitary Poincar6 groups in the unitary conformal 
groups, the case n = 1, called unitary Poincar6 group for time 

u(1, 1) D poinc(1) -~ u( l )  ~ d(1) ~ t(1) ~ R 3, t(1) = R (3.9) 

and the case n = 2, called unitary Poincar~ group for Minkowski time-space 

u(2, 2) D poinc(2) ~ u(1) ~ d(1) ~ sI(C2)R ~ t(4) ~ R 12, t(4) ~ R 4 
(3.10) 

are distinguished. Only for n = 1, 2 do the defining complex n-dimensional 
representations of SL(C ~) have an invariant bilinear form and, therewith, a 
bilinear form on the translation time R and time-space R 4. 

For n = 1 (time) with the trivial group SL(C 1) = { 1 } the bilinear form 
is simply the product of two numbers, which induces a definite product 

n =  1: t(1) 3 t , s ~  ts E R ,  t 2 - > 0  (3.11) 

For n = 2 (time-space) the SL(C2)-invariant totally antisymmetric spinor 
'metric' CAB = _eBa induces the Lorentz 'metric' g on Minkowski time- 
space, indefinite with signature (1, 3) 

n = 2 :  t ( 4 ) ~ x , y ~ ,  g ( x , y ) = g ( y , x )  E R ,  sign g = (1, 3) 
(3.12) 

3.4. Modality Groups 

Any representation of the totally ordered additive group (R, +),  called 
the causal group, in a unitary group, called the modality group, on a complex 
space V -- C d, d = d+ + d_, 

D" R --> U(d§ d_), -r ~ D('r) (3.13) 



1056 Sailer 

has a conjugation * which implements the inversion of the causal group 

D('r)* = D(- ' r )  (3.14) 

Any unitary causal group representation is built by nondecomposable 
ones. The nondecomposable representations of the causal group (Boerner, 
1955; Sailer, 1989) are characterized by an invariant tx ~ R and a dimension 
d ~ N. They are generated by iHd, with l id being the sum of the identity 
ld on the representation space V ~ C d and a power-d nilpotent element Nd 

Dd(" IIX): R ~ Ud(R) C GL(Cd), 

"Dd('rl IX) = e i'rHd 

Ha = Ixld + Nd 
for d = 1: N1 = 0 

for d -> 2: f (Nd)d-1 --/: 0 
[(Nd) d --- 0 

(3.15) 

The modality groups of the nondecomposable representations are 
given by 

fu( d + 1 _ _  
2 ' 

.-l) 
for d = l ,  3 . . . .  

for d = 2 , 4  . . . .  

(3.16) 

Only the U(1)-representations (Fourier representations) of the causal 
group R are irreducible and positive unitary; they are not faithful. We have 

Dl('rlix) = e "~ = Dl(--a-I IX)* ~ U(1) C GL(C) (3.17) 

The lowest dimensional injective representations are the indefinite uni- 
tary reducible, but nondecomposable d -- 2 representations 

D2(rIIX) = e [ 0  = D E ( - r l  IX)• 

U(1, 1) C GL(C 2) (3.18) 

Their antisymmetric twofold product gives the irreducible U(1)-repre- 
sentation Dl('r 12IX); their totally symmetric products give all nondecomposa- 
ble, indefinite, unitary faithful Ud(R)-representations Dd('rl (d - 1)IX), d = 
2 ,3  . . . . .  
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3.5. Modality Groups for Translations 

The additive group of translations R n2 has the irreducible, nonfaithful 
Fourier representations in the positive unitary modality group U(1) 

Dl('lq): R n2---> U(1), Dl(xlq) = e i~x'q) (3.19) 

characterized by a linear form q ('energy-momenta') of the translations. 
Faithful representations are possible in the subgroups U(12,) • T(n 2) 

of the unitary Poincar6 groups with the translation group T(n 2) = exp[t(n2)], 

D2(" Iq): R "2 ---) U(12,) • T(n 2) C U(n, n) 

D2(xlq)=e,(x.q>(on i(xoln + ~ n ) )  1,, (3.20) 

Those representations have the indefinite modality group U(n, n). 

3.6. Quantum Algebras and Quantum Invariants 

Any complex vector space V ~ C a defines its quantum algebra (Sailer, 
1993a,c) Q~(C 2a) of Fermi or Bose type e = • 1 as a Clifford algebra over 
the direct sum space V = V (3 V r ~ C 2a with the linear forms V r. The 
Clifford factorization of the tensor algebra | is performed with the dual 
product, extended e-symmetrically as bilinear form of V, leading to the 
characteristic Fermi and Bose (anti)commutators, given in a dual basis {e A, 
v d eB}a,B=l of (V, V r) by 

in Q~(C2a), ~ =  • ~ [~a'es]~=~an (3.21) 
I[~a, ~s]~ 0 = [e ~, eS], = 0 

The Lie algebra of the basic space endomorphisms is represented by 
inner derivations of the quantum algebras. 

The quantum algebra functors Q, are exponential, i.e., the quantum 
algebra of a direct sum space V = V1 (3 I/2 is isomorphic to the tensor product 
of the individual quantum algebras 

Q,(V~ (3 V2) ---- Q,(V~) | Q~(V2) (3.22) 

The GL(C~)R-invariants C[I] in a quantum algebra Q,(C z~) will be 
defined to be those quantum elements which commute with all endomor- 
phisms of the basic vector space V --- C d, 

C[I] = {a ~ Q~(CZa)i[ea~8, a] = 0 for aliA, B = 1 . . . . .  d} 
(3.23) 
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They are generated by the basic space identity or by 

[e A, eA]-r d d 
I = 2 - eA~'A - ~ '2 = --EeAea + ~ 2  (3.24) 

Bose quantum algebras Q_(C 2d) have countably infinite complex dimen- 
sion I%. In this case the identity I is transcendental in the quantum algebra 
and the ring of invariants C[I] is isomorphic to the complex polynomials in 
one indeterminate. 

For Fermi quantum algebras which are, because of the nilquadratic basic 
vectors (Pauli's principle), e.g., ele 1 = 0, finite dimensional Q+(C za) = 
c 4a, the identity I is algebraic in the quantum algebra 

1)(, in Q+(c2d): 

Therefore the/-polynomials C[I] have maximal degree d. 

3.7 .  C a u s a l  Q u a n t u m  M o d a l i t i e s  

A complex representation of the causal group (R, + )  on a complex 
vector space V ~ C a with basis {e a } and dual basis {~A} can be canonically 
extended to the quantum algebras Q~(C zd) for the representation space V 
V r ~ C zd. The modality group U(d+, d_) of the causal group representation 
determines a conjugation of  the quantum algebra. 

The generator il(u) for a positive-definite U(1) representation of  the 
causal group R on the space V ~ C is given in the quantum algebras as follows: 

Q~(C 2) with conjugation * of U(1): 

[e, eq_~ [u, u*]_~ 
l (u )  = Ix 2 - Ix 2 

e = u, # = u* 
[u*, u], = 1 

[[u*, u * L = O =  [u, u], 
(3.26) 

The generator ill(b, g) for an indefinite U(1, l) representation of  the 
causal group R on the space V ~ C 2 with its semisimple and nilpotent part 
I(b, g) and N(g), resp., is given in the quantum algebras as follows: 

p 

e I = g, e 2 = b 
dl = bX, e2 = gX 

Q~(C 4) with conjugation x of U(I,  1): [gX, b]~ = l = [b x, g]~ 
[gX, g]~ = 0 = [b x, b]~ 

etc. 

[g, bX]_~ + [b, gX]_~ 
H(b, g) = IX 2 + ggX = l(b, g) + N(g) (3.27) 
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The eigenvectors of the basic space are denoted by g ('good'), the nilvectors, 
i.e., principal vectors which are not eigenvectors, by b ('bad'). 

The quantized U(n, n) representations of the translations R n2 in the 
quantum algebras Q,(C 4n) have n 2 generators iQ(b, g)J, 

Q,(c  4n) with conjugation • of U(n, n): 

gA, bA, A-- I ..... n 
b~, g~ 
[g~<, bB]e = 8~ = [b~ <, gB], 
[g~<, gS]e = 0 = [b~ <, bB]~ 
etc. 

Q(b, g)J qJ [ga, b~]_, + [b A, g~]-~ 
= 2 

with pJ -- (In, ~n) 

+ (pJ)aSgag~ = qil(b, g) + N(g)J 

(3.28) 

In spaces with reducible, but nondecomposable representations of the 
causal group (R, +), the eigenvectors for the translations form a true subspace 
of all vectors with the action of the causal group. 

In quantum algebras with a causal group representation on the basic 
space V ~-- C d, the subalgebra for the eigenvectors of the translations is given 
by the invariants of the nilpotent part N of the generator H = I + N 

eigen Q~(C 2a) = {a ~ Q,(C2a)I[Nd, a] = 0} (3.29) 

Obviously for U(1)-modality in the quantum algebras Q~(C2), the subal- 
gebra for the eigenvectors is the full algebra 

d = 1: Nt = 0 ~ eigen Q~(C 2) = Q~(C 2) (3.30) 

For U(1, l)-modality the subalgebra for the eigenvectors is a true subal- 
gebra generated by the basic space eigenvectors g, gX and the basic space 
identity 

d - - 2 :  
1, = [g' b• + [b, gX]_, gX, /(b, g) g, 

2 

generates eigen Q~(C 4) 

) 
, [b, g], [gX, b• 

(3.31) 

The commutators [b, g] and [g• b • are nontrivial only in the Fermi quan- 
tum algebra. 
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For U(n, n), n ~ 2, one obtains as generating system 

d = 2 n :  { l 'ga'g~<'l(b'g)=[gA'b~<]- '+[ba'g~<]-~la2 = 1 , . . . , n }  

generates eigen Q~(C 4n) (3.32) 

3.8. Fock and Heisenberg Forms of Quantum Algebras 

Expectation values for quantum elements arise with linear quantum 
algebra forms (Saller, 1992a). Such forms will be required to be invariant 
with respect to the adjoint action of the basic space endomorphisms, i.e., 
they can be nontrivial only on the ring of quantum invariants C[I], generated 
by the identity I = ([#A, eA]-e)  ]2 

(')d: Q,(C 2a) ---> C,  a ,--, (a)a (3.33) 

a ~t C[I] ~ (a)d = 0 

Since the ring of invariants is Abelian, quantum algebra forms will be 
required to be Abelian thereon. Therefore they are completely determined 
by the form value ( l )d of the generating invariant I 

(lk)a = ((I)a) k, k = 0, 1 . . . .  (3.34) 

In Fermi quantum algebras Q+(C 2a) the identity I is algebraic of degree 
d. Therefore its form value can be only one of the zeros of the minimal 
/-polynomial 

d d d d 
in Q+(C~): ( 1 ) d -  2 '  2 1 . . . . .  1 2 '  2 (3.35) 

Since a quantum algebra Q,(C z~) of a vector space V is isomorphic to 
the tensor product of its factors with respect to a direct sum V ~ V~ @ V2, 
where Vl,z carry nondecomposable causal group representations, a linear form 
is required to be writable as a product form on the corresponding quantum 
algebra factors 

Q,(V~ �9 V2) ~ Q~(V1) | Q,(V2) ~ (')d = (')d~(')a2 (3.36) 

a = a~a2 ~ (a)d = (al)dl(a2)a2 

If there occur only irreducible causal group representations, the possible 
forms of the 'smallest' quantum algebras Q~(C 2) determine all quantum 
algebra forms. For the irreducible representations Dt('r I Ix) of the causal group 
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on V m C, the nonfactorizable Q,(C2)-forms are determined by the possible 
form values (I)1 of the identi ty/ ,  

f[~,  el, = 1 

(")1: Q,(C 2) -4 C determined b y / I r e ,  eq_,  (3.37) 

L \  2 

1 - 2~(1)1 1 + 2~(I) t  
(ge)t = 2 and e(e~)l - 2 

[ U ( | ) ]  d-  can  be combined 

d 
Fock forms of Q~(C 2d) ~ | Q~(C2): { ~(1)a -- d+ 2 d _  (3.39) 

ford§ + d_ = d =  1,2 . . . .  

Fock forms come with the distinction of a basis {ua},~=l and a decomposition 
V = f])ad=) Cu a ~ C d into irreducible 1-dimensional representation spaces 
for the causal group. They can also be called Sylvester forms or oscillator 
forms or Abelian forms. 

Fermi quantum algebras Q+(c2d), in contrast to Bose quantum algebras, 
have a linear reflection between the basic vectors V and linear forms V r 
which keeps invariant the quantization, but inverts the identity I: 

{ {~a, e a} ~ {e a, ~a} (invariant) 

ea ~ e.a: [ --  e'IgA --  #aeA (3.40) 

2 ,-, - l ,  '-" 

The forms of Fermi quantum algebras over vector spaces with even dimension 
d allow a reflection-compatible trivial form value 

on Q+(C2d): ( I )d  = 0 for d = 2, 4 . . . .  (3.41) 

For Fermi quantum algebras Q+(C 2) there are only two forms, determined 
by (1)l = -T- 1/2, which trivialize one of the forms (e~)l or (~e)l. This structure 
is taken over also for the Bose case 

= e<[e, eq_,~ = u [(~e)l = 1 and e(ee~l = 0 
~(/)1 2 / l  2 ~ [(~e)l = 0 and e(e~)t 1 

(3.38) 

~u* for e(I)l = - 1/2 
U(1)-conjugation: e = u, e = [eu* for e(1)t = 1/2 

With those two nonfactorizable forms on the quantum algebras Q,(C 2) 
over a 1-dimensional space V ~ C with an irreducible causal group representa- 
tion, factorizable forms of Q~(C 2d) with signature (d+, d_) for [U(1)] d+ • 
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Such forms can be combined by forms with (I)2 = 0 on  Q§ 4) over a 2- 
dimensional vector space V---- C 2 with a faithful nondecomposable representa- 
tion D2('rl W) of the causal group and an indefinite U(1, 1)-conjugation 

f{gX, b} = 1 = {b • 
(')2: Q+(C 4) ~ C determined by [([gX, b])2 = 0 = ([b x, g])2 

1 
m (gXb)2 = (bgX)2 = (bXg)2 = (gbX)2 2 (3.42) 

The combined forms have signature (d/2, d/2) for [U(1, 1)] dl2 C U 
(d/2, d/2): 

dr2 ~(1)d = 0 (3.43) 
Heisenberg forms of Q+(C ~ )  = | Q+(C4): [ for  d = 2, 4 . . . .  

Heisenberg forms come with the distinction of a 'pair' basis {ga, ba}~21 
and a decomposition V ~ ~a~2t (Cg a + Cb A) ~-- C a into nondecomposable 
2-dimensional representation spaces for the causal group. They can also be  
called Witt forms or non-Abelian forms. 

3.9. Quantum Algebras with Inner Products 

With both a conjugation * from the basic space V ----- C a induced on a 
quantum algebra Q,(C 2d) and a linear quantum algebra form (.)d, which is 
conjugation-compatible (a*)d = Ca)d, the quantum algebra carries an inner 
product 

�9 (" I'): Q~(C 2d) • Q~(C 2a) --) C, *(alb) = (a*b)a = *(bla) 
(3.44) 

The invariance group U(d+, d_) for the conjugation * of the basic space 
V - C d determines the positive or indefinite structure of the inner product 
of the quantum algebra. 

The factorization of a quantum algebra with the left ideal of the orthogo- 
nal for the inner product (Gelfand-Nalmark-Segal construction) 

Q~(C2d) • = {n ~ Q~(C2d)l(a*n)d = *(aln) = 0 for all a e Q~(c2d)} 

(3.45) 

determines the vector space Q~(C~)/Q~(C2d) • where the classes carry an 
induced nondegenerate inner product. 
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4. UNITARIZATION FOR INDEFINITE METRIC FIELDS 

Quantum fields describe both particles and interactions. An experimenter 
in a laboratory uses an asymptotic space spanned by Wigner particle states, 
which has to be interpretable with probabilities. 

A free relativistic particle quantum field @(xl m) with mass m --> 0, 
Fermi or Bose r = _+ 1, is characterized by its spacelike trivial quantization 
distribution s(xlm) (principal value integration m E in the energy plane) 

[4,  4]~(xlm) = [4 (0  Ira), CP(xl m)]~ = is(xlm), 3~ s(xlm) . . . .  
m 

= Oforx2 < 0  

I d4q eiXq 
is(xlm) = ~ r  2 _ q2) _ _ _  

(4.1) 

ie(xo) ~ d4q e ixq 1 
�9 r J -~1r-~ m2e- q2 

and its expectation function for the 'opposite' commutator C(xlm), which is 
supported also spacelike 

([r tp]_,)(xl m) = ([4(01 rn), CP(xl m)]_~) = C(xl m), - iO--2k C(xl m) . . . .  
m 

I d4q e ~ 
C(xlm) = ~ ~(m 2 _ q2) (4.2) 

The expectation function C m n o t  the causally supported quantization distribu- 
tion smrel ies  on the metrical structure of the quantum fields with respect to 
the inner product induced by both a linear quantum algebra form and a 
conjugation (Section 3), connected with the time-space translation 
representations. 

The sum of causally ordered quantization distribution and expectation 
function is the Feynman propagator 

( ~ ~ ) ( x l  - im) = -~(x0)[r ~]~(xl m) + ([~,  cl~]_,)(xlm) 

= f(xl -ira),  - iO-2 f(xl - i ra)  . . . .  (4.3) 
m 

together with the conjugated distribution ('anti-Feynman propagator') given 
as follows: 

f(xl +ira) = +i~.(Xo)S(xlm) + C(xlm) = f(xl-T-ira) 

-- ( d4q eiXq 
(-2-'rr-~ 20(+x~176 - q2) (4.4) 

J 

= + i f d 4 q e  ixq 1 =fd3qe-e"~e+_~lxolqo 
--at (2703 m 2 +_ io -- q2 (2ax)3q0 
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The Feynman combinations f(xl • contain the sign functions [ 1 • e(Xoqo)]/ 
2 = O(+_xoqo), relating to each other the causal structures of time translations 
and energies; they allow nontrivial in- and outgoing states. 

The time integrals of the Feynman distributions exhibit via the Yukawa 
potential the interaction structure realized by the relativistic quantum fields. 
They involve only the quantization distribution s(xlm) and are independent 
of the inner product structure 

f f = e -film 
-T-i dx o f(xl •  = dlx01 s(xlm) 2Trl~cl (4.5) 

Here time and energy integration have been interchanged. 
The space integral of the Feynman distributions gives a causally ordered 

time representation 

I e+_ilxol m 
d3x f(xl +-im) - - -  (4.6) 

m 

Here space and momentum integration have been interchanged. 
For time x0 = 0 only the inner-product-dependent expectation function 

C(xl m) contributes nontrivially 

d3x f (~  l •  = dax C(xlm) = 1 
m 

(4.7) 

A quantum algebra for fields with an indefinite modality group U(n, n) 
carries an indefinite inner product (Section 3); it is in danger to lead via 
the expectation function to 'negative probabilities.' The dangerous quantum 
algebra elements with 'negative norm' are relevant for a local formulation 
of relativistic interactions, e.g., for the Coulomb interactions (Section 2.1). 
Since such fields have no particle interpretation and have to be avoided as 
in- and outgoing states, they should contribute only with their interaction 
describing quantization distributions. 

The nilpotent part in the representation of the time-space translations 
provides a projection to cut out a subalgebra of time-space translation eigen- 
vectors (particles). They carry a positive-definite inner product and build the 
asymptotic state space. 

4.1. Unitarity for Particle Fields 

The realization of the probabilistic structure for relativistic fields with 
a complete particle interpretation (Section 1) is simple: Such fields represent 
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the time-space translations in the group U(1) or, more exactly in U(ld) for 
d degrees of freedom, generated by iI(u) 

d [u ~, u~*]_~ 
[u~, u~]~ = B~, I(u) = ~ l(u ~) with l(u ~) - 

~=1 2 
(4.8) 

For fields with momentum-dependent harmonic components u(q) one 
has to include a sum with f [d3q/(2'rr)3qo] (Section 1). The local stability 
group, e.g., spin SU(2) and SO(3) or circularity (polarization) U(1) and 
SO(2), has to be compatible with the modality group U(1). 

The quantum algebra Q~(C 2d) for the harmonic components u% u*~ is 
the product of d individual quantum algebras Q,(C2), one for each or. These 
factors carry via the Fock form ( . ) l  and the U(1)-conjugation * a positive- 
definite inner product (Sections 3.8, 3.9), e.g., shown in an orthogonal Q,(CE)- 
basis {u~u*qk, l = 0, 1 . . . .  } (for Fermi algebras only k, l = 0, 1) 

I'((u*u)~)~ = 1 
for Q,(C2): (/(u))l : --~ ~ ~(U/~ = k!Bkl (4.9) 

[*(UkU*mlU/U *n) = k!amO~nO~kt 

The asymptotic particle Fock space can be spanned by the classes of  
the norm nontrivial vectors { u kl k = 0, 1 . . . .  }. 

4.2. Unitarization for Gauge Fields 

The dangerous indefinite structures for Maxwell-Witt  fields A(x) k 
(gauge fields) arise because of  the representation of  the translation group for 
the (0, 3)-degrees of freedom in the indefinite unitary group U(1, 1)--with 
the symbols of Section 2.1, 

in Q_(C4): [G x, B] = 1 = [B x, G] (4.10) 

GG • H(B, G) = {B, G • } + {G, a • } + _ _  = / ( a ,  G) + N(G) 
2 M0 

In contrast to G, G • ( 'good'),  the vectors B, B • ( 'bad')  are not eigenvectors of  
the time translations. They have to be avoided in the asymptotic particle space. 

The Fock form (" >2 with the U(I,  1)-conjugation • gives an indefinite 
inner product • I b) = (aXb)2 of the Bose quantum algebra Q_(C4), 

(B• = 1 = (GXB)2 
(OXO)2 = 0 = (BXB)2 

(I(B,G))2= 1 ~  G x - B  x G + - B ~  = •  G - B  \ --T _+1 

(4.1 I) 
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Asymptotic help comes from the Fadeev-Popov fields (Section 2.2) which 
have a 'twin' structure with respect to the (0, 3)-components of the Maxwell- 
Witt fields 

inQ+(C4): {a • = 1 = {u • (4.12) 

[u, a x] + [a, u x] uu x 
n(a, u) = + = I(a, u) + N(u) 

2 No 

They have an indefinite Fock inner product, too: 

f(a• = 1 = (uXa)2 
/ ( u X u ) 2  = 0 ~-- (aXa)2 

( l ( a , u ) ) 2 = - - l ~ ) / u  x +_aXu_+a~ x/U--+a u+--a~ 

(4.13) 

The generator for the translation group representation for both the non- 
particle gauge field degrees of freedom and the Fadeev-Popov fields in U(1, 
1) x U(1, 1) 

H(B, G, a, u) = H(B, G) + H(a, u) (4.14) 

is invariant under the Becchi-Rouet-Stora transformation (Becchi et al., 
1976), which--in a quantum framework--replaces the classical gauge trans- 
formation. The BRS transformation is effected by a nilquadratic Fermi ele- 
ment N(G, u) in the product quantum algebra Q-(C 4) @ Q§ 4) which is 
compatible with the translation action (Sailer, 1991, 1992b) 

N(G, u) = i(Gu x - uG• 

N(G, u) 2 = 0, 

[H(B, G, a, u), N(G, u)] = 0 (4.15) 

The BRS charge N(G, u) acts by the hybrid (Z2-graded) bracket HAt, a] on 
the quantum elements, i.e., with a commutator on Bose and an anticommutator 
on Fermi elements. 

Only the translation eigenfields G(x) (gauge-fixing Bose field) and 
U(x) k (Fadeev-Popov Fermi field) can be combined to a nilpotent Lorentz 
vector current N(x)i in a field theory (Kugo and Ojima, 1978) 

N(G, u) = f d3x N(~) ~ N(x) j = G(x)U(x)J+ (4.16) 

The gauge-fixing or the Fadeev-Popov field alone gives a Lorentz scalar 
GG or a tensor U+U+.k t 
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The subalgebra of the BRS invariants ('gauge invariants') can be gener- 
ated and spanned by translation eigenvectors only 

eigen Q+_(C s) = {a ~ Q_(C 4) (~ Q+(C4)I[[N(G, u), a~ = 0} 

generated by { 1, G, G x, u, u x, I(B, G) + l(a, u)} (4.17) 

(I(B, G) + l(a, u))z = 0 

The condition of gauge invariance, adequately implemented as BRS invari- 
ance for quantum fields, merges with the condition to have only translation 
eigenstates in the asymptotic state space. 

With respect to the Fock form, the subalgebra of the BRS invariants 
(translation eigenvectors) carries a positive-semidefinite inner product. After 
factorization with the orthogonal of the Fock form on the BRS-invariant 
subalgebra (GNS construction), there remains a trivial 'c-number' complex 
1-dimensional asymptotic vector space whose basis can be represented by 
the quantum algebra unit 1. 

Nevertheless, the translation representation in the indefinite unitary mo- 
dality group U(1, 1) is relevant for the interactions, as illustrated by the ordered 
time integral of the quantization distribution s(xl0), which has nontrivial 
contributions from both particle and nonparticle degrees of freedom (Cou- 
lomb potential) 

i f dx0 •(x0)[A(0) k, A(x) j] = .qkj 2~X[ (4.18) 

If an 'incoming' particle state s, which as a translation eigenstate is 
simultaneously BRS-invariant, [IN, s] = 0, e.g., with photons U 1'2 and other 
particle representations u s with modality group U(1), undergoes a time-space 
development with the translation group generator H, the resulting 'outgoing' 
state [H, s] remains BRS-invariant, IN, [H, s]] = 0, since [H, N] = 0. 

4.3. Unitarization for Heisenberg-Majorana Fields 

Heisenberg-Majorana fields realize faithfully space-time translations in 
the indefinite modality group U(2, 2) with the generator iQ(b, g)Y--fo_rmulated 
in the notation of Section 2.3 without the momenta dependence b(q), etc.: 

in Q+(CS): {b x, ga} = {gX, b~ } = ~ (4.19) 

Q(b, g)J = qJ Ibm' gX] + [g~, b x] 
2 

+ g~(pJ)~g~ = qJl(b, g) + N(g) j 

g% gX ('good') are translation eigenvectors, in contrast to the nilvectors b% 
b x ('bad'). 
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The subalgebra with all time-space translations eigenvectors is character- 
ized by a trivial action for the nilpotent part of the translation representation 

eigen Q+(C 8) = {a e Q+(C8) I [N(g) j, a] = 0] (4.20) 

generated by { 1, g~, gX, l(b, g)} 

Obviously, the nilpotent part (nilcharge) is compatible with the generators 
of the time-space translations 

[Q(b, g)J, N(g) k] = 0 (4.21) 

In the full field-theoretic formulation the nilcharge N(g)J is the space 
integral of the nilcurrent N(x) j 

N(g)J = f d3x  N(~)J, N(x) s = g(x)a(pJ~g(x)/~ (4.22) 

The appropriate quantum algebra form for the modality group U(2, 2) 
is the indefinite Heisenberg form (Section 3.8) 

I([b x, g13]) 4 _ ([gX, bl3])4 = 0 

= =* ~ (bxga)4 = (gXb~)4 = 1 (4.23) 
(I)4 0 / (g~bx)4 = (bl3gaX)4 = 2 ~ 

With respect to the indefinite inner product there survives only a trivial 
complex 1-dimensional asymptotic state space for the Heisenberg-Majorana 
fields, spanned by the quantum algebra unit 1 (Section 3.7). 

The vanishing form for the translations generator (Q(b, g)J} = 0 leads 
to a trivial expectation function for the quantization opposite commutator of 
the Heisenberg-Majorana fields 

([b(0),~, b(x)a]) = 0, ([g(0)~, b(x)a]) = 0, ([g(0)~, g(x)A]) = 0 
(4.24) 

Therewith the Feynman propagators have no spacelike contributions; there 
are no in- and outgoing particle states (Heisenberg, 1967). 

If the causally supported propagator is written as a difference of Feynman 
and anti-Feynman propagators [f(x I - im) - f(xl im)]/2, e.g., 

i ( d a q e  ixq p~l k 
(ffb(0)Xb(x)) = -e(x0){b(0) x, b(x)} = ~ j (2,rr) 3 (q2 _ m2)2 

1 _ 1 [  1 + 1 ] (4.25) 
qZ---~m2 p 2 q2 _ m 2 d- io q2 _ m 2 _ io 
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one may also say that the in- and outgoing states, seen in the integration 
prescription +-io, compensate each other. Such a compensation is familiar 
from the 'twin' structure for the (0, 3)-gauge field nonparticle contributions 
and the two Fadeev-Popov degrees of freedom (Section 4.2). 

Although Heisenberg-Majorana fields have no asymptotic spacelike 
interpretable particle contributions, they can induce nontrivial interactions 
via their causally supported quantization distributions, e.g., seen in the expo- 
nential potential 

f dxoe(Xo){b(O)X,b(x)} = --2paOa I dlxols'(xlm) 

f dlx01 s'(xlm) 
e-I~lm 

2 - (4.26) 
J arm 
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